
Kurvengesteuertes

Werkzeugwechselsystem

Miksch GmbH Reutlinger Str. 5 73037 Göppingen Germany Tel. +49(0)7161/6724-0 Fax +49(0)7161/14429 miksch@miksch.de www.miksch.de

WERKZEUGWECHSLER

CUT

WERKZEUGWECHSELSYSTEM MIT SCHEIBENMAGAZIN

CTM

WERKZEUGWECHSELSYSTEM MIT KETTENMAGAZIN

CTA

WERKZEUGWECHSELSYSTEM FÜR BOHRWERKE

CTNA

- Schneller und geräuscharmer Bewegungsablauf
- Mechanische Synchronisation des Arbeitsablaufes
- Kontrollierte Beschleunigung und Geschwindigkeit während des gesamten Arbeitsablaufes
- Einfache, kompakte Bauweise
- Greifer mir automatisch schließenden Zangen
- Scheibenmagazine f
 ür 12, 20 und 30 Werkzeuge lieferbar
- Kettenmagazine für bis zu 80 Werkzeuge
- Lieferbar f
 ür Werkzeugaufnahmen SK und HSK

Inhaltsverzeichnis

Werkzeugwechsler CUT	5
Allgemeines	5
Bewegungsablauf	5
Drehrichtung des Greiferarmes	5
Gefahrenzone	6
Wahl der Baureihe	
Montageanleitung	6
Verwendung eines Bremsmotors	6
Überlastkupplung	7
Hinweise für zuverlässiges Funktionieren	7
Inbetriebnahme	7
Wartung	8
Ausführungen	8
Bezeichnungen des CUT-Werkzeugwechslers	8
Anbaulagen	9
Technische Daten	9
Abmessungen CUT 31	10
Abmessungen CUT 41	12
Abmessungen CUT 51	14
Technische Daten des Antriebes	16
Anbau und Gebrauch der Endschaltergruppe	16
Beschreibung des Greiferarmes BP	17
Abmessungen	17
Bezeichnung des Greiferarmes BP	18
Beschreibung des Werkzeugwechselsystems CTM	20
Bewegungsablauf	20
Technische Daten	21
Zubehör	21
Abmessungen CTM 30	22
Auswahldiagramm CTM 30	23
Bezeichnungen des Werkzeugwechselsystems CTM 30	23
Abmessungen CTM 40	24
Auswahldiagramm CTM 40	
Bezeichnungen des Werkzeugwechselsystems CTM 40	25
Abmessungen CTM 50	26
Auswahldiagramm CTM 50	27
Bezeichnungen des Werkzeugwechselsystems CTM 50	27
Werkzeugwechselsystem CTA	28
Werkzeugwechselsystem CTNA	29
Scheibenmagazin TM	30
Produktübersicht	31
Produktübersicht	32

Die Firma Miksch behält sich das Recht vor, jederzeit Änderungen vorzunehmen, die der Verbesserung der Produkte dienen. Die im Katalog enthaltenen Werte sind deshalb nicht verbindlich.

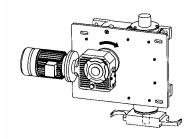
Die Maßeinheiten entsprechen dem internationalen Maßsystem (S.I.); Darstellungen in Zeichnungen nach DIN 6 (ISO 128) Projektionsmethode 1. Dieser Katalog annulliert und ersetzt die vorausgegangenen Kataloge.

Die auch nur teilweise Wiedergabe des Inhalts und der Illustrationen ist nicht gestattet.

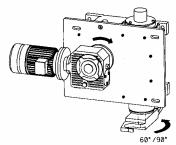
© 2000 Miksch GmbH, D-73037 Göppingen Printed in Germany

Allgemeines

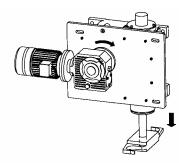
Der mechanische CUT-Werkzeugwechsler der Firma Miksch ist eine kurvengesteuerte Vorrichtung zur Umwandlung der gleichförmigen Drehbewegung der Antriebswelle in eine sinnvolle Abfolge von ungleichförmigen, linearen und rotierenden Bewegungen der Abtriebswelle, auf der Greiferarm sitzt.

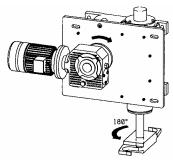

Die einfache Konstruktion, die Erzeugung der Bewegungen durch das aus Kurve und Abtriebsglied bestehende, mechanische System und die zuverlässige Steuerung während des gesamten Arbeitsablaufs, haben die Fertigung eines Produktes ermöglicht, das folgende besondere Eigenschaften aufweist:

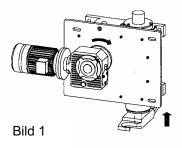
- Hohe Genauigkeit, Geschwindigkeit, weiche Bewegungen, schwingungsarmer, leiser Bewegungsablauf, breiter Anwendungsbereich bei geringen Abmessungen.

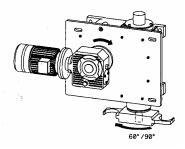

Bewegungsablauf

Der Drehwinkel des Greiferarmes für die Umsetzung der Werkzeuge ist 90°, kann aber auf Wunsch auch 60° betragen. Der Hub für Ausfahren und Einfahren des Greiferarmes hängt von dem Aufnahmekonus ab (siehe Tabelle 1, Seite 9).

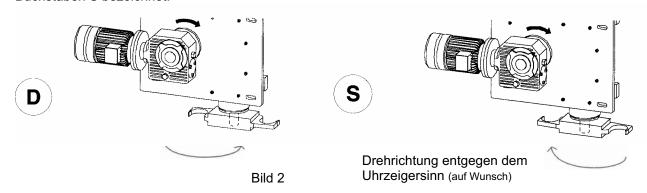

Positionen des Bewegungsablaufs


1 Ruhestellung

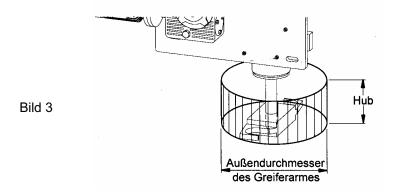

2 Greifen der Werkzeuge (Drehung des Armes um +60 /+90°)


 Ausfahren der Werkzeuge aus den Aufnahmen (lineare Ausfahrbewegung)

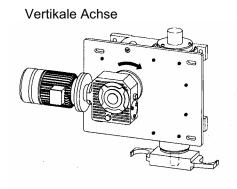
4 Austausch der Position der Werkzeuge (Drehung des Greiferarmes um 180°)


5 Einfahren der Werkzeuge in die Aufnahmen (lineare Einfahrbewegung)

6 Schwenken in Ruhestellung (Drehung des Armes um -60 /-90°)


Drehrichtung des Greiferarmes

Die in Bild 2 dargestellten Drehrichtungen beziehen sich auf die Drehbewegung des Greiferarmes von Position 1 in Position 2. Die Drehung **im** Uhrzeigersinn ist die Standardausführung und wird mit dem Buchstaben D bezeichnet. Die Drehung **entgegen dem Uhrzeigersinn** kann auf Wunsch geliefert werden und wird mit dem Buchstaben S bezeichnet.


Gefahrenzone

Da es sich um ein formschlüssiges Getriebe handelt, bewegt sich der Greiferarm nur in seinem Arbeitsbereich. Der Mechanismus des CUT-Werkzeugwechslers kann nur infolge von Überlastung des Antriebs, durch Ansprechen der Überlastkupplung, durch Bruch irgendeines inneren Bauteiles oder durch Unterbrechung der Stromzufuhr angehalten werden. Es ist daher notwendig, während des Betriebes die Gefahrenzone zu meiden. Bei Wartung ist die Stromzufuhr des Motors zu unterbrechen, bevor in die Gefahrenzone eingegriffen wird.

Die CUT-Werkzeugwechsler können bei Werkzeugmaschinen mit Vertikalspindeln und bei Werkzeugmaschinen mit Horizontalspindeln verwendet werden. Bei der Standardausführung ist die Drehrichtung des Greiferarmes im Uhrzeigersinn, kann aber auf Wunsch auch entgegen dem Uhrzeigersinn sein. In diesem Fall müssen auch Greiferöffnungen entsprechend liegen.

Achtung! Wird die Drehrichtung des Motors umgekehrt, verläuft die Drehung des Greiferarmes rückwärts, das heißt aber nicht, daß das Greifen in umgekehrter Richtung erfolgt.

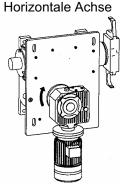


Bild 4

Wahl der Baureihe

Die Größe des CUT-Werkzeugwechslers ist von der Werkzeugaufnahme in der Werkzeugmaschine abhängig, in die der CUT eingebaut werden soll. Für ein störungsfreies Funktionieren ist es notwendig, sich an die zulässigen Werte von Masse und Geschwindigkeit, die in der Tabelle 1, Seite 9, der technischen Daten angegeben sind, zu halten. Diese Werte bestimmen die Art des Antriebes. Falls einer dieser Werte überschritten wird, ist eine Überprüfung notwendig. Bitte fragen Sie in diesem Fall unser technisches Büro.

Montageanleitung

Die CUT-Werkzeugwechsler können in jeder Lage angebaut werden. Es genügt, die Öleinfüll- und Ablaßstopfen, sowie die Entlüftungsschraube gemäß der Einbaulage auszutauschen. Die Montageplatte des CUT wird mit Schrauben befestigt und nach Ausrichtung des CUT mit Stiften in der Lage gesichert.

Verwendung eines Bremsmotors

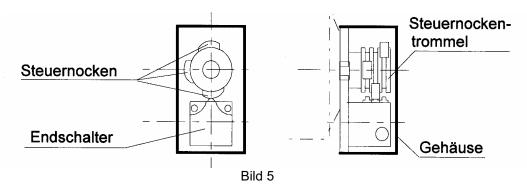
Ein Bremsmotor wird eingesetzt, um den CUT in der Ruhestellung, die nach jedem Takt ist, anzuhalten. Die Verweilzeit in Ruhestellung wird von der Steuerung der Werkzeugmaschine bestimmt.

Für die Inbetriebnahme des CUT bei Montage oder nach Wartungsarbeiten empfehlen wir. Bremsmotoren mit Handlüftung und zweitem Wellenende mit Handrad zu verwenden.

Überlastkupplung

In der Standardausführung des **CUT** ist ein Schneckengetriebe mit eingebauter Rutschkupplung. Der Zweck ist, bei Notstop oder Stromausfall in der Bewegung, die Bauteile vor Beschädigung zu schützen und auch den Anfahrstoß in der Bewegung bei Wiederinbetriebnahme zu dämpfen.

Hinweise für zuverlässiges Funktionieren


Die CUT Werkzeugwechsler in Standardausführung sind mit einer Endschaltergruppe ausgerüstet, die aus 3 Endschaltern und 3 Steuernocken besteht, die die Bewegungsabläufe kontrolliert, die für die Durchführung eines Taktes des CUT-Werkzeugwechslers erforderlich sind.

- Die Einstellung des Steuernockens, der das Anhalten des Motors auslöst, muß so erfolgen, daß die Kurve des CUT-Werkzeugwechslers in der Mitte der mechanischen Rast anhält.
- Die Einstellung des Steuernockens, der die Freigabe des Werkzeuges auslöst, muß so erfolgen, daß dies in dem Moment geschieht, in dem der Greifer die Werkzeuge gegriffen hat und bevor das Herausziehen des Werkzeuges beginnt.
- Die Einstellung des Steuernockens, der die Verriegelung des Werkzeuges steuert, muß so erfolgen, daß die Verriegelung in dem Moment geschieht, in dem der Greifer die neuen Werkzeuge übergeben hat, aber noch ehe die Freilassung derselben erfolgt.

Um diese Operationen zu ermöglichen, sieht der mechanische Bewegungsablauf der Greifer kurze Rastphasen vor.

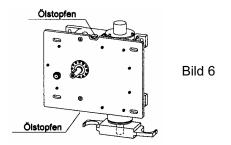
Das Anhalten des Motors während der Bewegungsphase muß unbedingt vermieden werden, weil dies schwere Schäden am CUT-Werkzeugwechsler hervorrufen kann. Falls vorgesehen ist, während der Einstellung einen Impulsgeber zu verwenden, darf dies nur bei herabgesetzter Geschwindigkeit durchgeführt werden; es ist besser, diese Arbeiten manuell durchzuführen d.h. den Motor von Hand durchzudrehen.

Endschaltergruppe FC3

Inbetriebnahme

Der CUT-Werkzeugwechsler wird werkseitig, wenn nicht anders vereinbart, mit Lebensdauerschmierung (Öl ISO VG 150) geliefert. Für die Einfüllung und das Ablassen des Schmiermittels sind am Gehäuse zwei Bohrungen vorgesehen. Auf jedes Gehäuse wird ein Etikett geklebt, welches angibt, ob Öl eingefüllt ist. Hier einige Öle, die dem Mineralöl ISO VG 150 entsprechen:

AGIP Blasia 150
BP Energol GR-XP 150
Castrol Alpha SP 150
Chevron NL Gear Compound 150
ESSO Spartan EP 150


Circo 150

FINA Giran 150

MOBIL Mobilgear 629

SHELL Omala Oil 150

TOTAL Carter EP 150

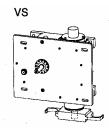
Beim Ölwechsel ist auf unbedingte Sauberkeit zu achten. Es ist ein Filter mit feinem Sieb zu benützen. Die erforderliche Ölmenge, siehe Tabelle 1, Seite 9.

Wartung

Der CUT-Werkzeugwechsler benötigt nur eine sehr geringe Wartung. Es ist in Abständen zu überprüfen ob Öl aus dem Gehäuse austritt. Wenn solche Verluste auftreten, sind dies Anzeichen irgendwelcher Störungen am Werkzeugwechsler oder der Abnützung der Dichtungen. Dann ist eine Wartung durchzuführen und der Fehler zu beheben.

Bei der normalen Wartung der Werkzeugmaschine oder alle 8000 Betriebsstunden des CUT-Werkzeugwechslers ist es notwendig, den CUT-Werkzeugwechsler zu überprüfen, Hierbei ist zu prüfen, ob die Achse der Greifer kein zu großes Spiel zeigt. Wenn nötig, sollte man den Mechanismus untersuchen. In regelmäßigen Abständen ist die Oberfläche des Werkzeugwechslers und die Luftführungen für die Ventilation und Abkühlung der Elektromotoren auf Sauberkeit zu prüfen. Bei den Motoren mit elektromagnetischer Bremse ist der Abnützungszustand der Bremsen zu überprüfen, hierbei sind die Anweisungen und Vorschriften des Herstellers des Motors zu beachten.

Ausführungen

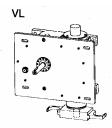

Die CUT-Werkzeugwechsler werden in folgenden Ausführungen angeboten:

VS CUT mit direktem Antrieb über die Antriebswelle

VL CUT mit langer Antriebswelle zur Anbringung des Standard-Schneckengetriebes

VLR CUT mit Schneckengetriebe und Rutschkupplung

VLRP CUT mit Schneckengetriebe, Motorflansch und Rutschkupplung VLRA CUT mit Schneckengetriebe-Bremsmotor und Rutschkupplung



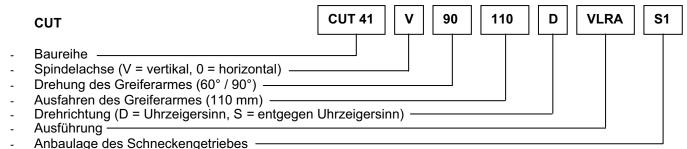


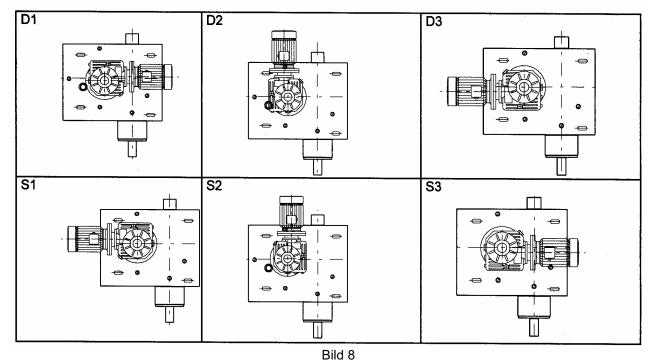
Bild 7

Bezeichnungen des CUT-Werkzeugwechslers

Die Bezeichnungen des CUT-Werkzeugwechslers bestehen aus Buchstaben- und Zahlengruppen, wie in dem hier dargestellten Schema. Bei Bestellung ist diese Codierung zu benutzen. Hierdurch werden Mißverständnisse und Rückfrage vermieden.

Bezeichnungsbeispiel:

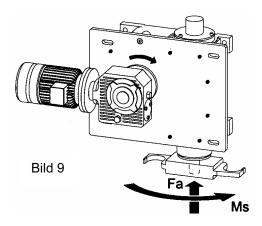
Für einen CUT-Werkzeugwechsler der Größe 41, für eine Werkzeugmaschine mit Aufnahme SK 40, vertikaler Spindel, Drehung des Greiferarmes 90°, mit Schneckengetriebe-Bremsmotor und Rutschkupplung, Anbaulage S1, ergibt sich folgende Bezeichnung:


Bei Bestellung sind außer der Anbaulage des Untersetzungsgetriebes noch weitere Daten anzugeben, die den Antrieb betreffen, wie zum Beispiel:

- 1) Das max. Werkzeuggewicht und der Achsabstand des Greiferarms.
- 2) Die Abmessung des Flansches nach IEC B5, wenn das Schneckengetriebe ohne Motor bestellt wird, aber ein Motor angebaut werden soll.
- 3) Die Daten des Elektromotores: Leistung, Polzahl, Spannung, Stromart, Frequenz etc.
- 4) Die Endschaltergruppe FC3 falls gewünscht.
- 5) zur Auswahl des Greiferarmes beachten Sie bitte das gesonderte Kapitel

Anbaulagen

Die CUT-Werkzeugwechsler können mit Schneckengetrieben ausgerüstet werden. Diese können am CUT-Werkzeugwechsler in 6 verschiedenen Anbaulagen angebaut werden.

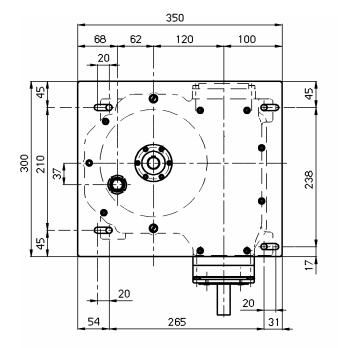

Da die CUT-Werkzeugwechsler auch mit anderen Antrieben als den Standardantrieben geliefert werden können (wie zum Beispiel: Kupplungsbremskombinationen, Regelgetrieben usw.), müssen alle technischen Daten zu diesen Antrieben bekanntgegeben werden. Auf Wunsch können solche Antriebe auch von der Firma Miksch geliefert werden.

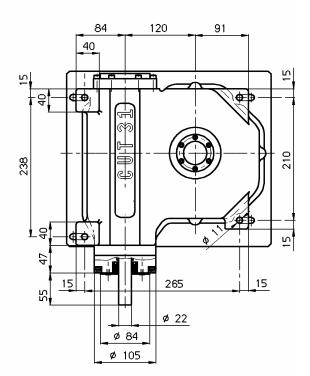
Technische Daten

Tabelle 1

Bau- reihe	Ausfahren des Armes [mm]	max. Achsabstand Arm [mm]	Höchst- gewicht Werkzeug [kg]	max. stat. Moment Ms [Nm]	max. Axial kraft Fa [N]	Taktzeit [s]	Instal- lierte Leistung [kW]	Schmier- mittel Menge [I]	Gesamt- gewicht [kg]
CUT 31	85 60	600	5	105	600	siehe	0,18	4,5	38
CUT 41	110 60	700	10	215	1400	entspre- chende	0,37	7.2	65
CUT 51	165 85	800	20	415	2100	Diagramme	0,75	13	130

Ausführungen mit anderen Merkmalen auf Wunsch




Genauigkeit der Bewegungen der Abtriebsachse

•	Drehung	180° ±0,05	[Grad]
•	Geradlin. Bewegung	165/60±0.20	[mm]
•	Wiederholgenauigkeit	± 0.03	[]
•	Ebenheit	0.05	[mm]
•	Konzentrizität	0.05	[mm]

Abmessungen CUT 31

Ausführung VS

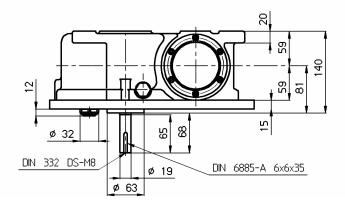


Bild 10

- Das lineare Aus- und Einfahren der Werkzeuge um 85 [mm] ist der größtmögliche Hub. Auf Wunsch lassen sich CUT-Werkzeugwechsler mit geringerem Hub bauen.
- Die Befestigung des CUT-Werkzeugwechslers geschieht über die 4 Langlöcher in der Montageplatte. In der Standard-Ausführung wird nach dem Ausrichten des CUT-Werkzeugwechslers in der Werkzeugmaschine und dem Kontrollieren, ob die Werkzeugspindelachse mit der CUT-Achse parallel verläuft, die Lage mit 2 Stiften gesichert.
- Zur Funktion des CUT-Werkzeugwechslers ist es notwendig, auf der Antriebswelle eine Endschaltergruppe mit mindestens 3 Endschaltern anzubauen.

Ausführung VLRA

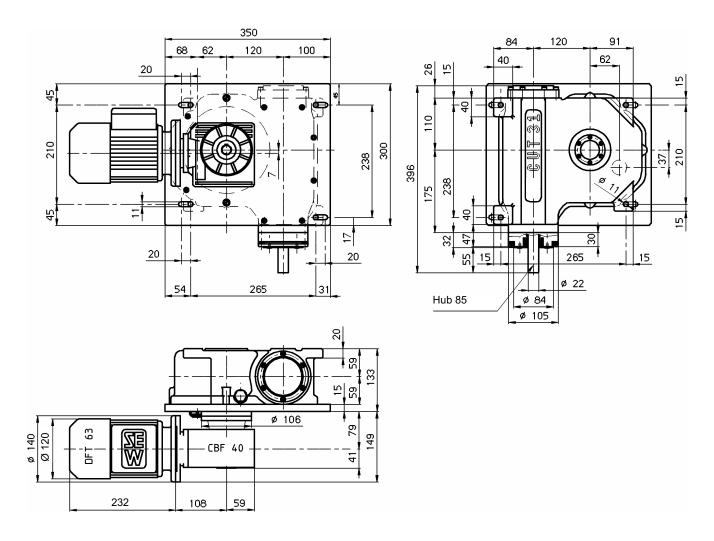


Bild 11

- Das lineare Aus- und Einfahren der Werkzeuge um 85 [mm] ist der größtmögliche Hub. Auf Wunsch lassen sich CUT-Werkzeugwechsler mit geringerem Hub bauen.
- Die Befestigung des CUT-Werkzeugwechslers geschieht über die 4 Langlöcher in der Montageplatte. In der Standard-Ausführung wird nach dem Ausrichten des CUT-Werkzeugwechslers in der Werkzeugmaschine und dem Kontrollieren, ob die Werkzeugspindelachse mit der CUT-Achse parallel verläuft, die Lage mit 2 Stiften gesichert.
- Als Standardantrieb wird ein Schneckengetriebebremsmotor verwendet.
- Zur Steuerung des CUT-Werkzeugwechslers wird auf der Abtriebswelle des Schneckengetriebes eine Endschaltergruppe mit 3 Endschaltern angebaut, siehe Seite 7.

Abmessungen CUT 41

Ausführung VS

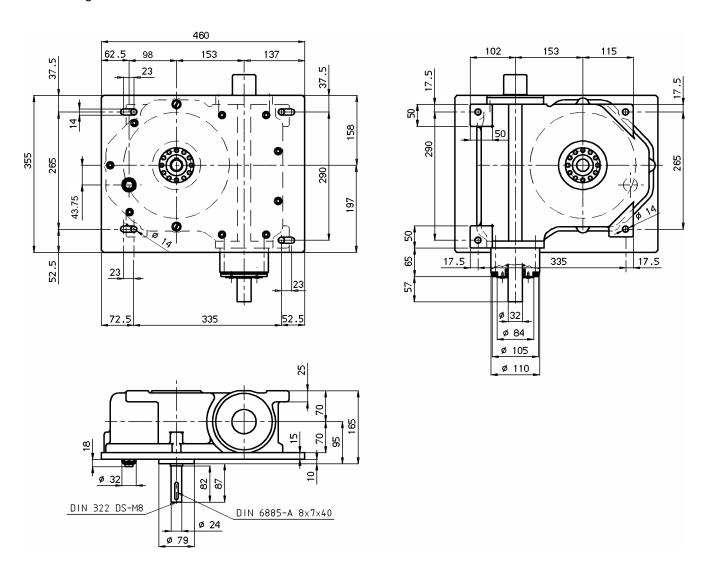
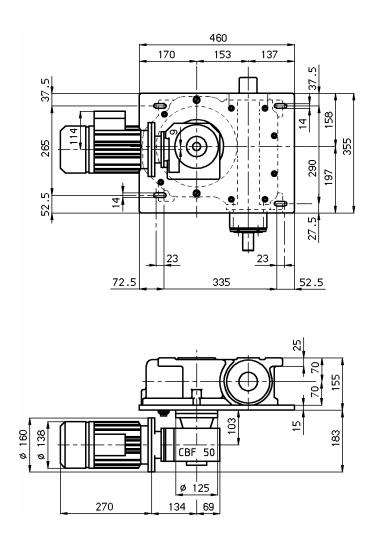



Bild 12

- Das lineare Aus- und Einfahren der Werkzeuge um 110 [mm] ist der größtmögliche Hub. Auf Wunsch lassen sich CUT-Werkzeugwechsler mit geringerem Hub bauen.
- Die Befestigung des CUT-Werkzeugwechslers geschieht über die 4 Langlöcher in der Montageplatte. In der Standard-Ausführung wird nach dem Ausrichten des CUT-Werkzeugwechslers in der Werkzeugmaschine und dem Kontrollieren, ob die Werkzeugspindelachse mit der CUT-Achse parallel verläuft, die Lage mit 2 Stiften gesichert.
- Zur Funktion des CUT-Werkzeugwechslers ist es notwendig, auf der Antriebswelle eine Endschaltergruppe mit mindestens 3 Endschaltern anzubauen.

Ausführung VLRA

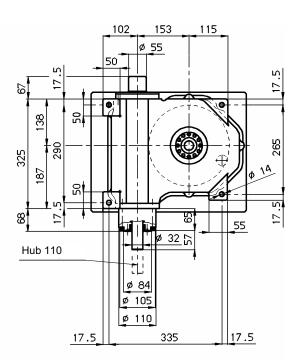


Bild 13

- Das lineare Aus- und Einfahren der Werkzeuge um 110 [mm] ist der größtmögliche Hub. Auf Wunsch lassen sich CUT-Werkzeugwechsler mit geringerem Hub bauen.
- Die Befestigung des CUT-Werkzeugwechslers geschieht über die 4 Langlöcher in der Montageplatte. In der Standard-Ausführung wird nach dem Ausrichten des CUT-Werkzeugwechslers in der Werkzeugmaschine und dem Kontrollieren, ob die Werkzeugspindelachse mit der CUT-Achse parallel verläuft, die Lage mit 2 Stiften gesichert.
- Als Standardantrieb wird ein Schneckengetriebebremsmotor verwendet.
- Zur Steuerung des CUT-Werkzeugwechslers wird auf der Abtriebswelle des Schneckengetriebes eine Endschaltergruppe mit 3 Endschaltern angebaut, siehe Seite 7.

Abmessungen CUT 51

Ausführung VS

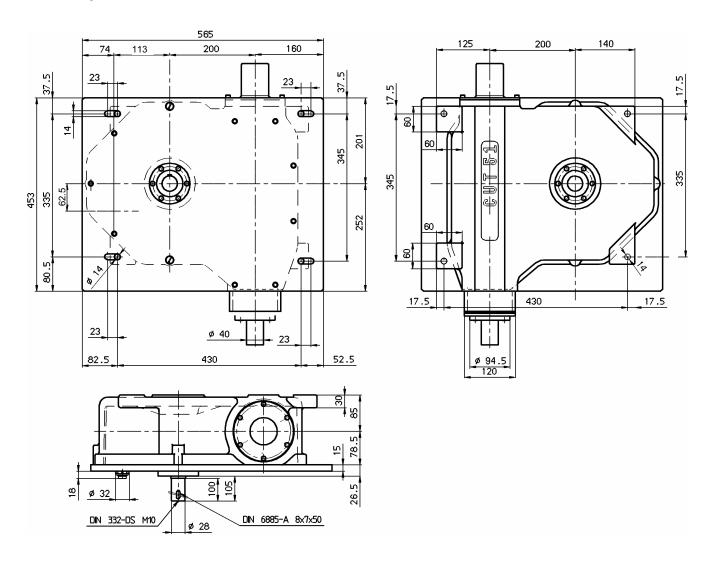


Bild 14

- Das lineare Aus- und Einfahren der Werkzeuge um 165 [mm] ist der größtmögliche Hub. Auf Wunsch lassen sich CUT-Werkzeugwechsler mit geringerem Hub bauen.
- Die Befestigung des CUT-Werkzeugwechslers geschieht über die 4 Langlöcher in der Montageplatte. In der Standard-Ausführung wird nach dem Ausrichten des CUT-Werkzeugwechslers in der Werkzeugmaschine und dem Kontrollieren, ob die Werkzeugspindelachse mit der CUT-Achse parallel verläuft, die Lage mit 2 Stiften gesichert.
- Zur Funktion des CUT-Werkzeugwechslers ist es notwendig, auf der Antriebswelle eine Endschaltergruppe mit mindestens 3 Endschaltern anzubauen.

Ausführung VLRA

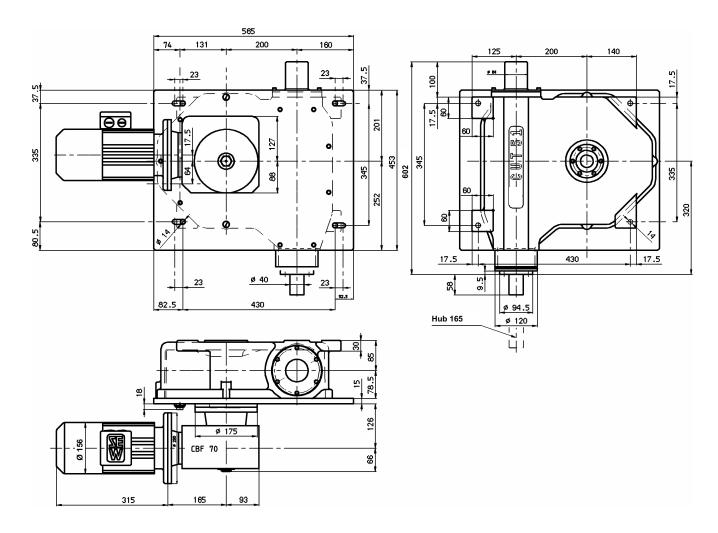


Bild 15

- Das lineare Aus- und Einfahren der Werkzeuge um 165 [mm] ist der größtmögliche Hub. Auf Wunsch lassen sich CUT-Werkzeugwechsler mit geringerem Hub bauen.
- Die Befestigung des CUT-Werkzeugwechslers geschieht über die 4 Langlöcher in der Montageplatte. In der Standard-Ausführung wird nach dem Ausrichten des CUT-Werkzeugwechslers in der Werkzeugmaschine und dem Kontrollieren, ob die Werkzeugspindelachse mit der CUT-Ächse parallel verläuft, die Lage mit 2 Stiften gesichert.
- Als Standardantrieb wird ein Schneckengetriebebremsmotor verwendet.
- Zur Steuerung des CUT-Werkzeugwechslers wird auf der Abtriebswelle des Schneckengetriebes eine Endschaltergruppe mit 3 Endschaltern angebaut, siehe Seite 7.

Technische Daten des Antriebes

Schneckengetriebe in Flanschausführung

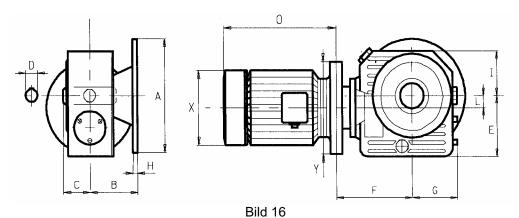
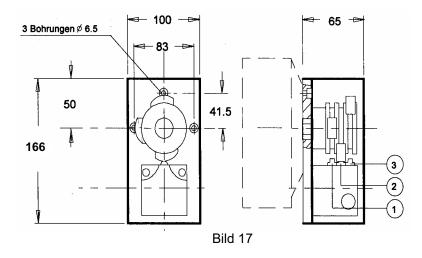



Tabelle 2

1 0 71										Drehstrombremsmotor 4-polig 230/400- Hz 50					
Baureihe	Α	В	С	Dxl	Е	F	G	Н	1	L	IEC	kW	0	Х	Y
CBF40	106	69	49	9x30	78	108	59	10	57	7	63b	0.18	235	123	140
CBF50	125	93	60	9x30	97	134	69	10	69	9	71b	0.55	270	138	160
CBF70	175	116	66	9x30	127	165	93	10	88	17.5	80c	0.95	295	156	200

Anbau und Gebrauch der Endschaltergruppe

Abmessungen der Endschaltergruppe FC3

Verwendete Endschalter: Balluff BNS 543-B 03 k 12-61-12 oder Euchner SN 3-R 12-502

Wie schon unter "Hinweise für zuverlässiges Funktionieren" beschrieben, siehe Seite 7, sind die Steuernocken so angeordnet, daß sie die Endschalter wie folgt betätigen:

- 1) Abschalten des Bremsmotores in Ruhestellung
- 2) Lösen der Werkzeugklemmung
- 3) Spannen der Werkzeugklemmung

Der gesamte Ablauf eines Taktes erfolgt bei einer Umdrehung der Antriebswelle.

Greiferarm BP 30-40-50

Beschreibung des Greiferarmes BP

Der Greiferarm besteht aus einem Aluminiumkörper mit Greifern aus gehärtetem Stahl. Das Greifen und Festhalten der Werkzeuge im Greifer erfolgt über einen Federmechanismus, beides wird über die Drehung des Greiferarmes erreicht. Durch die Drehung werden die Greifer entweder an die Werkzeuge angelegt oder von diesen weggefahren, entsprechend dem Bewegungsablauf, in welchem sich der Werkzeugwechsler gerade befindet. Während dem Umsetzen der Werkzeuge werden die Greifer automatisch verriegelt, so daß ein Herausfallen der Werkzeuge unmöglich ist.

Der Greiferarm ist auf der Welle des CUT mit einem Spannsatz befestigt. Hierdurch ist eine spielfreie Verbindung gesichert und es ist leicht möglich, die Arbeitsposition des Greiferarmes einzustellen. Der Mechanismus des Greiferarmes für das automatische Verriegeln ist mit Fett geschmiert und bedarf praktisch keiner Wartung. Die Arbeitspositionen des Taktes werden mechanisch von der Kurvenwelle des CUT gesteuert. Hierdurch ist eine sehr hohe Wiederholgenauigkeit des Arbeitsablaufes gewährt.

Abmessungen

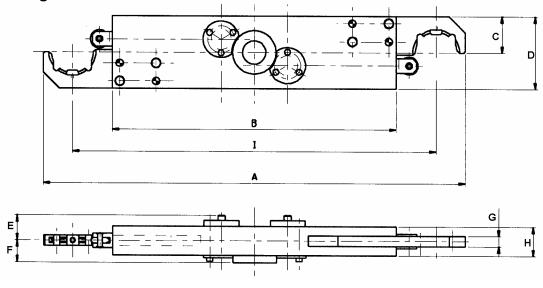
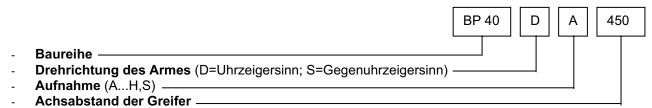


Bild 18

Tabelle 3

Baureihe	Achsabstand i	zum Anbau an	Α	В	С	D	E	F	G	н
	350		422	250						
	400		472	300						
DD 00	450	CUT 24	522	350	40	00	,,	00	14	40
BP 30	500	CUT 31	572	400	40	80	33	36		40
	550		622	450						
	600		672	500						
	400		480	290						
	450		530	340						
DD 40	500	CUT 41	580	390		400	33	35	44	40
BP 40	550		630	440	50	100	33	35	14	40
	600		680	490						
	650		730	540						
	500		630	330						
	550		680	380						
	600		730	430						
BP 50	650	CUT 51	780	480	75	120	33	43.5	14	50
	700		830	540						
	750		880	580						
	800		930	630						

Greiferarm BP 30-40-50


Tabelle 4

Bezeich- nung	Normen	Bezeichnung der A	ufnahmen	Werkzeug- wechsler	Scheiben- magazin	Greiferarm	
J	DIN 69871/69872	SK 30	ISO 30				
1	DIN 69893	HSK - A 32					
N	DIN 69893	HSK - A 40		CUT 31	CTM 30	BP 30	
т	DIN 69893	HSK - B 40					
X	JIS B6339	BT 30					
Α	DIN 69871/69872	SK 40	ISO 40				
В	JIS B6339	BT 40					
C	DIN 69893	HSK - A 50					
D	DIN 69893	HSK - A 63		CUT 41	CTM 40	BP 40	
E	DIN 69893	HSK - A 80		00141	C1W 40	DF 40	
F	DIN 69893	HSK - B 50					
G	DIN 69893	HSK - B 63					
Н	DIN 69893	HSK - B 80					
L	DIN 69871/69872	SK 50	ISO 50				
E	DIN 69893	HSK - A 80					
Н	DIN 69893	HSK - B 80		CUT 51	CTM 50	BP 50	
Р	DIN 69893	HSK - A 100		00131	C 11VI 30	DF 30	
U	DIN 69893	HSK - B 100					
Z	JIS B6339	BT 50					
S	Sonderaufnahme (Ze	eichnungen beifügen)					

Es können für alle Arten von Aufnahmen obiger Tabelle Greifer geliefert werden.

Bei Aufnahmen mit der Bezeichnung "S" ist eine genaue Dokumentation zur Verfügung zu stellen.

Bezeichnung des Greiferarmes BP

BEISPIEL: Greiferarm BP 40 mit Drehrichtung im Uhrzeigersinn, Aufnahme SK 40 und einem Achsabstand der Greifer von 450 mm

BP 40 - D - A - 450

Beschreibung des Werkzeugwechselsystems CTM

Das Werkzeugwechselsystem CTM besteht aus:

- 1 Werkzeugwechsler CUT
- 1 Greiferarm komplett mit Greifern und automatischer Verriegelung während der Drehung
- 1 Rundschalttisch Typ RIGIDIAL oder IR
- 1 Scheibenmagazin mit 12, 20 oder 30 Plätzen

Beschreibung:

Das Scheibenmagazin besteht aus einer Aluminiumscheibe, in welcher die Werkzeugkassetten sind, die sich um 90° schwenken lassen. Das Schwenken der Kassetten geschieht durch einen Pneumatikzylinder, wenn das gewünschte Werkzeug in der Wechselposition ist.

Die Drehung des Magazins erfolgt mit dem Rundschalttisch RIGIDIAL oder IR. Sie kann gegen oder im Uhrzeigersinn erfolgen, damit die Suche und Positionierung des benötigten Werkzeugs in möglichst kurzer Zeit erfolgt. Die Umkehrung des Drehsinns des Magazins erfolgt durch Drehrichtungsumkehr des Antriebsmotores des Rundschalttisches RIGIDIAL oder IR.

Das Erkennen der Position des Magazins, und dadurch auch des ausgewählten Werkzeugs, wird mittels berührungsloser Endschalter und Stiften an der Scheibe erreicht, während die Positionierung in eine Station des Rundschalttisches durch einen weiteren Endschalter kontrolliert wird. Der CUT wird über eine Endschaltergruppe mit 3 Endschaltern kontrolliert (siehe Seite 7, bzw. Seite 16). Um die Mechanik zu schützen, sind die Antriebe des CUT und des Werkzeugwechselsystem CTM mit eingebauten Rutschkupplungen versehen. Drehstrombremsmotoren treiben die Systeme an.

Bewegungsablauf

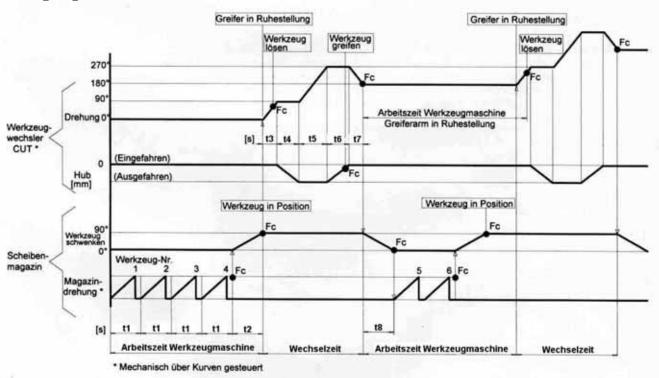


Bild 19

Zeit für Zyklus

t1 = Rotation des Magazins für 2 benachbarte Werkzeuge

t2 = Schwenken des Werkzeugs in Übergabeposition

t3 = Drehung des Greifers zur Übernahme des Werkzeugs

t4 = Hub des Greifers zum Ausfahren des Werkzeuges

t5 = Rotation des Greifers zum Wechseln der Werkzeuge

t6 = Hub des Greifers zum Einfahren der Werkzeuge

t7 = Rotation des Greifers in Ruhestellung

t8 = Zurückschwenken des Werkzeugs in das Magazin

Technische Daten

Та	bel	le	5
----	-----	----	---

СТМ		30	40	50
Max. Werkzeuggewicht	[kg]	5	10	20
Max. Gewicht aller Werkzeuge				
12 Werkzeuge	[kg]	60	160	200
20 Werkzeuge	[kg]	80	160	200
30 Werkzeuge	[kg]	80	160	300
Max. Ø der Werkzeuge				
12 Werkzeuge	[mm]	90	100	150
20 Werkzeuge	[mm]	60	90	120
30 Werkzeuge	[mm]	60	80	120
Max. Ø der Werkzeuge bei				
angrenzender Leerstelle				
12 Werkzeuge	[mm]	170	190	290
20 Werkzeuge	[mm]	120	180	240
30 Werkzeuge	[mm]	160	165	240
Min. Achsabstand	[mm]	350	400	500
	-			-

СТМ		30	40	50
Max. Achsabstand	[mm]	550	650	800
Min. Wechselzeit	[s]	1,3	1,5	1,5
Schaltzeit des Magazins	[s]	0,6	0,6	0,85
von Werkz. zu Werkz. bis	[s]	0,85	0,85	1
Max. Werkzeugsuchzeit				
12 Werkzeuge	[s]	4	4	6,5
20 Werkzeuge	[s]	6	6	8,5
30 Werkzeuge	[s]	10,5	10,5	15
Antriebsleistung CUT	[kW]	0,18	0,37	0,75
Antriebsleistung CTM	[kW]	0,13	0,18	0,75
Pneumatikzylinder zum				
Schwenken				
Durchmesser	[mm]	32	40	63
Hub	[mm]	40	50	75
Betriebsdruck	[bar]	5	5	5

Zubehör

- Vorrichtung zum Einlegen und Entnehmen von Werkzeugen (Bild 20)
- Klemmkasten mit integriertem Steckverbinder
- Pneumatikeinrichtung des CTM-Werkzeugwechselsystems
- Scheibenmagazin ausgerüstet für Antrieb mit NC-Motor (Kurve mit konstanter Steigung)

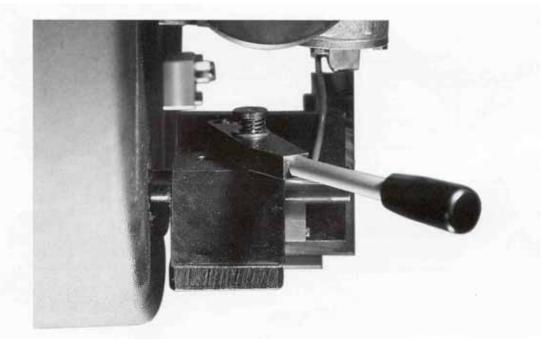
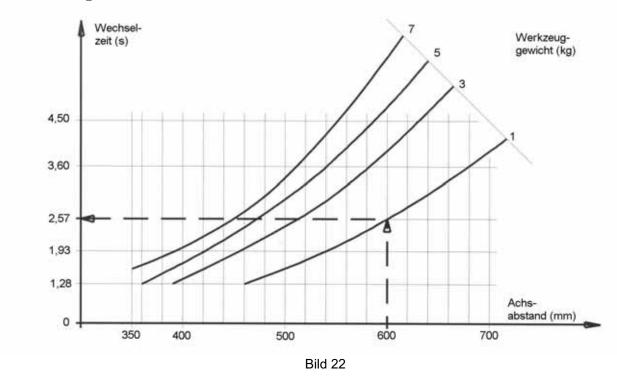


Bild 20

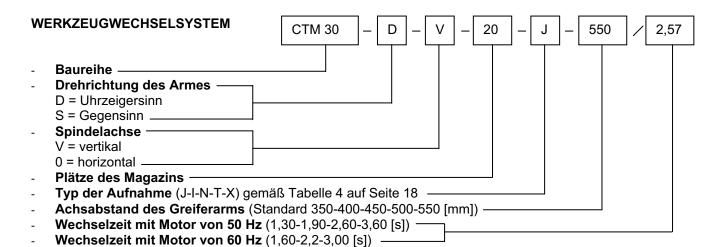
Abmessungen 230 Ansicht 'A' 4 Bohrungen M12 95 <u>3 Stiftlöcher ø10H</u>7 230 *0.02 120 370 Bild 21


Tahalla 6

rabelle 6										
Baureihe	Plätze	F (H	lub)	^	В	_	D	E	k	Gewicht
Daurenie	i latze	SK 30	HSK			C	"	<u> </u>	, r	[kg]
CTM 30/12	12		60	215	160	350	430	380	320	105
CTM 30/20	20	85		240	185	400	480	405	320	115
CTM 30/30	30			355	300	630	710	520	370	130

Tabelle 7

Achsabstand I	350	400	450	500	550
G	180	205	230	255	285


Auswahldiagramm

Beispiel: Werkzeuggewicht 1 [kg], Achsabstand Greiferzangen 550 [mm] ergibt eine Wechselzeit von 2,57 [s]

Bezeichnungen des Werkzeugwechselsystems

Die Bezeichnungen des CTM-Werkzeugwechselsystems bestehen aus Buchstaben- und Zahlengruppen, wie in dem hier dargestellten Schema. Bei Bestellung ist diese Codierung zu benutzen. Hierdurch werden Mißverständnissse und Rückfragen vermieden.

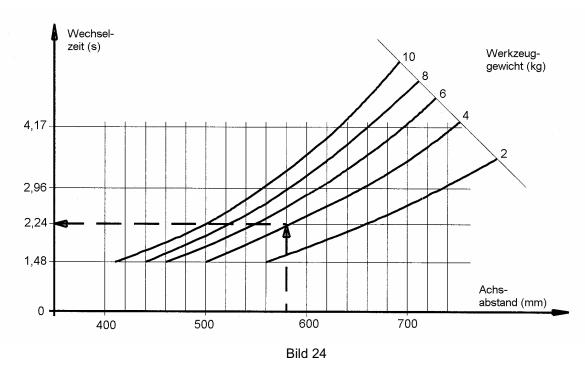
BEZEICHNUNGSBEISPIEL

Für ein Werkzeugwechselsystem mit 20 Plätzen, Aufnahme SK 30, vertikaler Achse der Spindel, Drehung des Greiferarmes im Uhrzeigersinn, mit Schneckengetriebebremsmotor und Rutschkupplung, Werkzeuggewicht 1 kg, Standard-Greiferarm mit Achsabstand 550 [mm] und Wechselzeit: 2,57 [s] ergibt sich:

CTM 30 - D - V - 20 - J - 550 / 2,57

Abmessungen 835 Spindel Ansicht 'A' 180 260 3 Stiftlöcher, ø10H7 6 Bohrungen M12 340 ±0.02 145 500

Bild 23


Tabelle 8

ſ			F (Hub)						С					_		Gewicht
	Baureihe	Plätze	SK40	HSK	Α	В	D	E		K	[kg]					
Ī	CTM 40/12	12	110		250	155	400	510	556	360	165					
ſ	CTM 40/20	20		60	350	255	600	715	446	360	190					
ſ	CTM 40/30	30		Ī	460	365	820	930	554	475	235					

Tabelle 9

abolio o								
Achsabstand I	400	450	500	550	600	650		
G	210	235	260	285	310	335		

Auswahldiagramm

Beispiel: Werkzeuggewicht 4 [kg], Achsabstand Greiferzangen 580 [mm] ergibt eine Wechselzeit von 2,24 [s]

Bezeichnungen des Werkzeugwechselsystems

Die Bezeichnungen des CTM-Werkzeugwechselsystems bestehen aus Buchstaben- und Zahlengruppen, wie in dem hier dargestellten Schema. Bei Bestellung ist diese Codierung zu benutzen. Hierdurch werden Mißverständnissse und Rückfragen vermieden.

BEZEICHNUNGSBEISPIEL

Für ein Werkzeugwechselsystem mit 20 Plätzen, Aufnahme SK 40, vertikaler Achse der Spindel, Drehung des Greiferarmes im Uhrzeigersinn, mit Schneckengetriebebremsmotor und Rutschkupplung, Werkzeuggewicht 4 kg, Standard-Greiferarm mit Achsabstand 580 [mm] und Wechselzeit: 2,24 [s] ergibt sich:

CTM 40 - D - V - 20 - A - 580 - 2,24

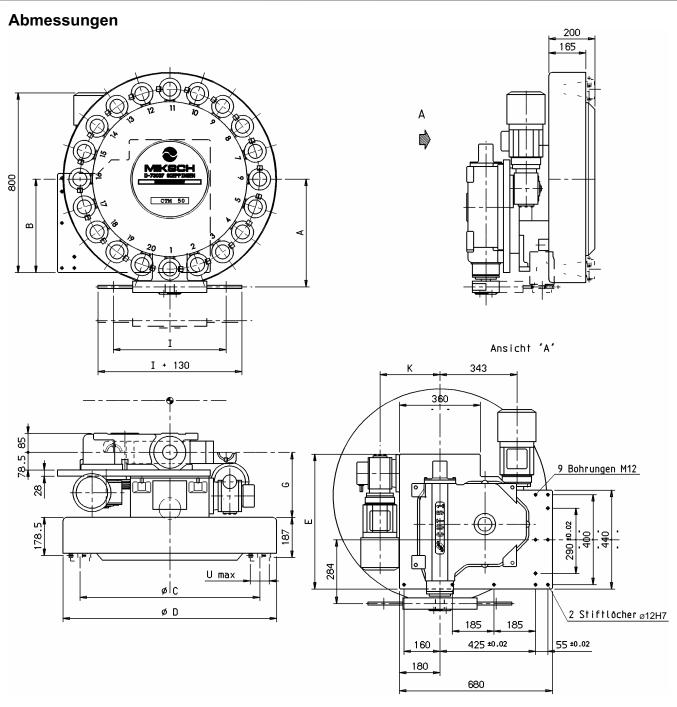
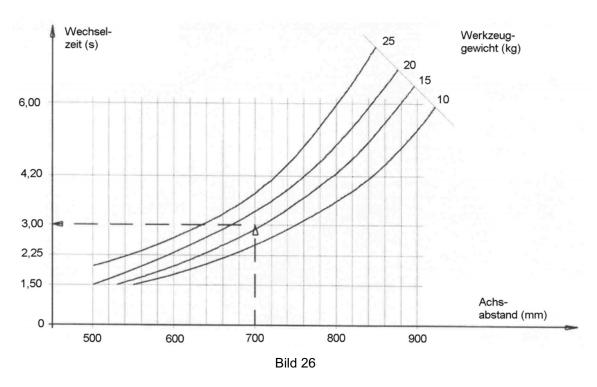


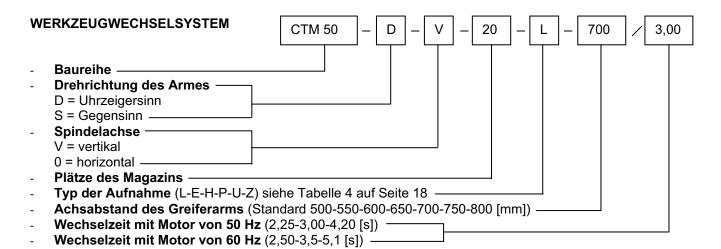
Bild 25


Tabelle 10

Baureihe	Plätze	F (Hub)		Α	Α	В	_	7	Е	K		Gewicht
Daurenie	Platze	SK50	HSK	SK 50	HSK					^		[kg]
CTM 50/12	12			379	391	315	600	750	500	233	130	350
CTM 50/20	20	165	85	479	491	415	800	950	600	267	120	450
CTM 50/30	30			679	691	615	1200	1350	800	267	125	550

Tabelle 11

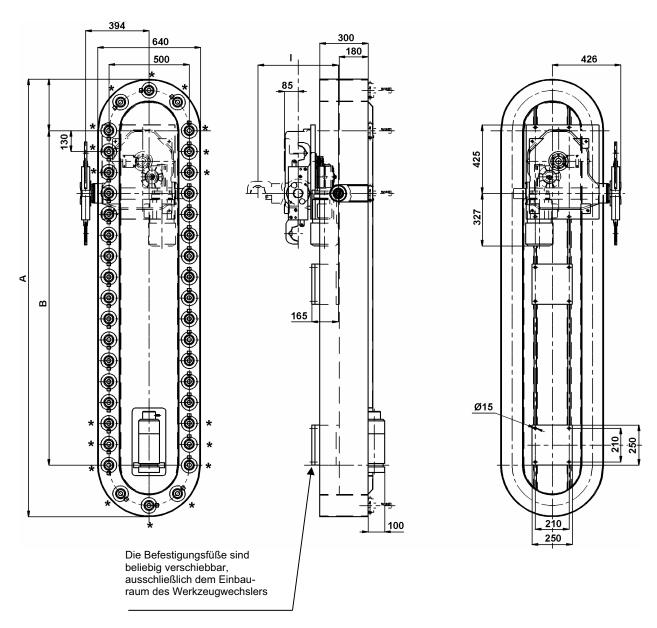
Achsabstand I	500	550	600	650	700	750	800
G	280	305	330	355	380	405	430


Auswahldiagramm

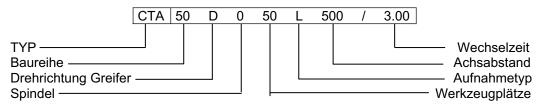
Beispiel: Werkzeuggewicht 15 [kg], Achsabstand Greiferzangen 700 [mm] ergibt eine Wechselzeit von 3,00 [s]

Bezeichnungen des Werkzeugwechselsystems

Die Bezeichnungen des CTM-Werkzeugwechselsystems bestehen aus Buchstaben- und Zahlengruppen, wie in dem hier dargestellten Schema. Bei Bestellung ist diese Codierung zu benutzen. Hierdurch werden Mißverständnissse und Rückfragen vermieden.

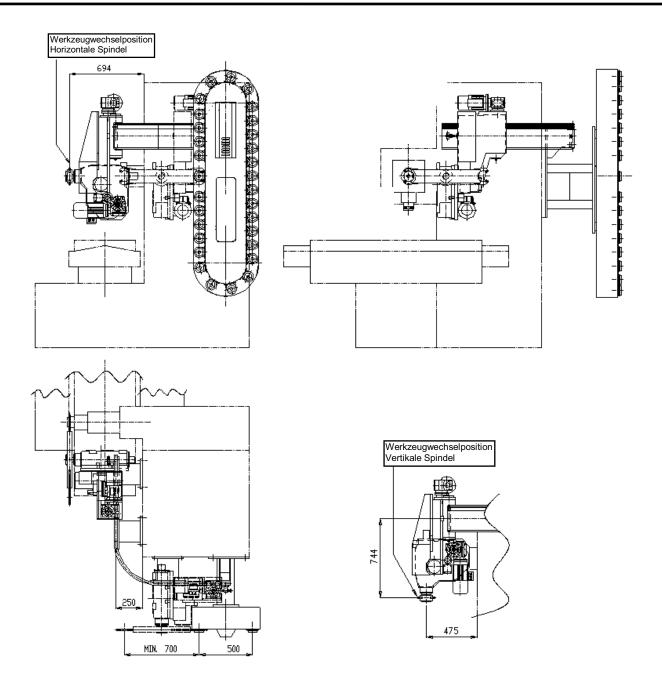


BEZEICHNUNGSBEISPIEL


Für ein Werkzeugwechselsystem mit 20 Plätzen, Aufnahme SK 50, vertikaler Achse der Spindel, Drehung des Greiferarmes im Uhrzeigersinn, mit Schneckengetriebebremsmotor und Rutschkupplung, Werkzeuggewicht 15 kg, Standard-Greiferarm mit Achsabstand 700 [mm] und Wechselzeit: 3,00 [s] ergibt sich:

CTM 50 - D - V - 20 - L - 700 / 3,00

Kurzbezeichnung

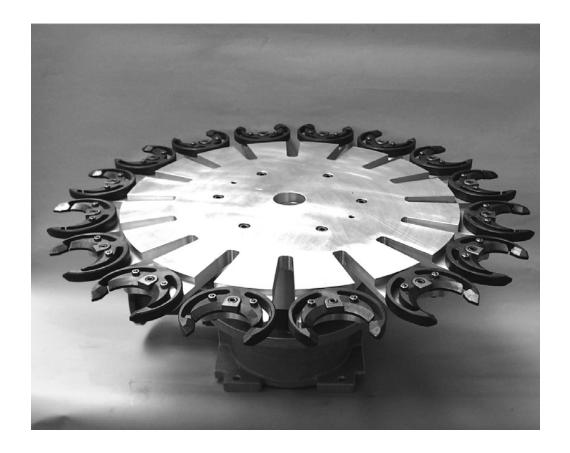


Bezeichnung	des Wechselsystems	Α	В
CTA 50 / 40	(40 Werkzeuge)	2720	2080
CTA 50 / 50	(50 Werkzeuge)	3370	2730
CTA 50 / 60	(60 Werkzeuge)	4020	3380
CTA 50 / 70	(70 Werkzeuge)	4800	4160

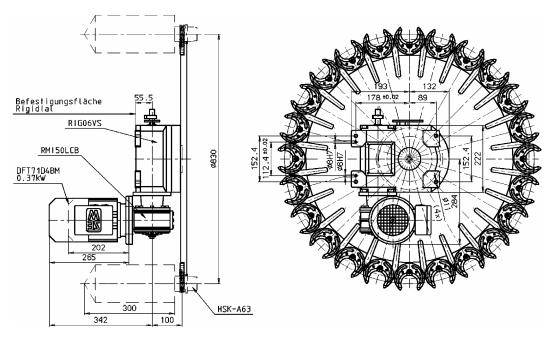
I (Standard) = 500 - 550 - 600 - 650 - 700 - 750 - 800

Bemerkung: Es ist möglich den Werkzeugwechsler an jeder Kassettenposition anzubringen, ausschließlich an den mit * gekennzeichneten Kassetten.

Andere Ausführungen des Kettenmagazines (Plätze, Aufnahmen) auf Wunsch.



Technische Daten


Werkzeugaufnahme	: SK 50 DIN 69871 (HSK 100 - HSK 160)				
Anzahl der Werkzeuge	: 30 - 80 Werkzeuge				
Achsabstand Greiferarm	: 700 - 850 mm				
Max. Werkzeuggewicht	: 25 kg				
Werkzeugwechselzeit	: 2,25 s - 6 s				
Geschwindigkeit der Verschiebeeinrichtung	: 30 m/s				
Max. Ø der Werkzeuge	: 120 mm				
Max. Ø der Werkzeuge bei angrenzender Leerstelle	: 200 mm				
Schaltzeit des Magazins	: 0,85 s				

Andere Ausführungen des Werkzeugwechselsystems (Plätze, Aufnahmen) auf Wunsch.

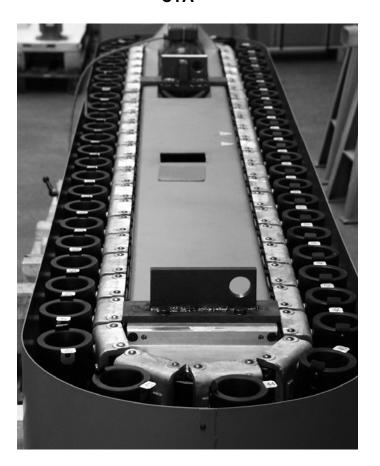
Scheibenmagazin TM 40 / 24 mit 24 Plätzen für HSK-A63

max. Werkzeugdurchmesser:

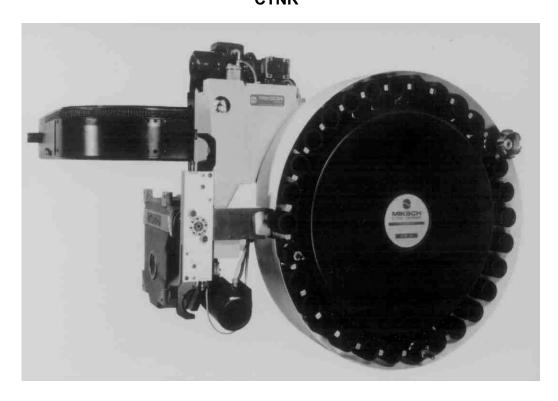
Werkzeugdurchmesser bei frei angrenzender Leerstelle:

max. Werkzeugmasse:

12 kg
max. Masse aller Werkzeuge:


160 kg

Andere Ausführungen des Scheibenmagazines (Plätze, Aufnahmen) auf Wunsch.

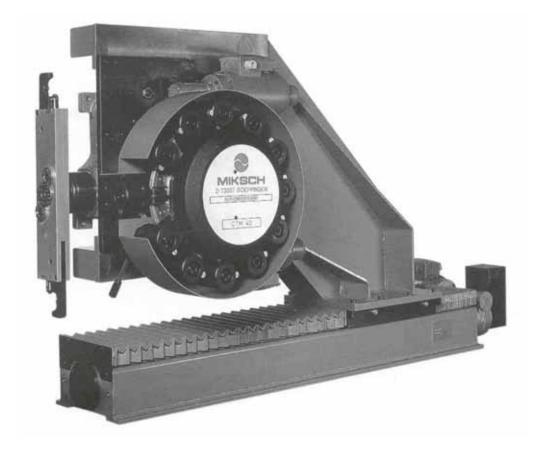


Produktübersicht

CTA



CTNR



Produktübersicht

CTM 40 - Werkzeugwechselsystem kombiniert mit einer Lineareinheit SMC 100

